Here are three vectors \overrightarrow{X} (1, 0, 1), \overrightarrow{Y} (-1, 0, 1) and \overrightarrow{Z} (0, -1, 0) in the 3D world space.

Define a position pos(1, 1, 0). These vector and position forms a new coordinate system A.
The inverse result is status B.

The original world coordinate system can be changed to A, the corresponding matrix is

    \[M_1 =  \begin{pmatrix} X_0 & Y_0 & Z_0 & P_0 \\ X_1 & Y_1 & Z_1 & P_1 \\ X_2 & Y_2 & Z_2 & P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

The original world coordinate system can be changed to B. We can explore it’s inverse matrix:

    \[\begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & P_0 \\ 0 & 1 & 0 & P_1 \\ 0 & 0 & 1 & P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} X_0 & Y_0 & Z_0 & 0 \\ X_1 & Y_1 & Z_1 & 0 \\ X_2 & Y_2 & Z_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} Q_0 \\ Q_1 \\ Q_2 \\ 1 \end{pmatrix}\]

    \[\begin{pmatrix} Q_0 \\ Q_1 \\ Q_2 \\ 1 \end{pmatrix} = \begin{pmatrix} X_0 & X_1 & X_2 & 0 \\ Y_0 & Y_1 & Y_2 & 0 \\ Z_0 & Z_1 & Z_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & -P_0 \\ 0 & 1 & 0 & -P_1 \\ 0 & 0 & 1 & -P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ 1 \end{pmatrix}\]

So its inverse matrix is :

    \[\begin{pmatrix} X_0 & X_1 & X_2 & 0 \\ Y_0 & Y_1 & Y_2 & 0 \\ Z_0 & Z_1 & Z_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & -P_0 \\ 0 & 1 & 0 & -P_1 \\ 0 & 0 & 1 & -P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

#include <iostream>
#include <vtkSmartPointer.h>
#include <vtkTransform.h>
#include <vtkActor.h>
#include <vtkConeSource.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkPolyDataMapper.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkAxesActor.h>
#include <vtkLine.h>
#include <vtkPlane.h>
#include <vtkSphereSource.h>

#include "./point.hpp"

using namespace std;

#define vtkSPtr vtkSmartPointer
#define vtkSPtrNew(Var, Type) vtkSPtr<Type> Var = vtkSPtr<Type>::New();

int main()
{
    Point xDir(1, 0, 1), yDir(-1, 0, 1), zDir(0, -1, 0), pos( 1, 1, 0 ); //pos(0, 0, 0);
    xDir.Unit();
    yDir.Unit();
    zDir.Unit();
    // pose trans: E => B
    double elements1[16] = { xDir[0], yDir[0], zDir[0], pos[0],
                            xDir[1], yDir[1], zDir[1], pos[1],
                            xDir[2], yDir[2], zDir[2], pos[2],
                            0, 0, 0, 1 };
    vtkSPtrNew( poseTrans, vtkTransform );
    poseTrans->SetMatrix( elements1 );
    poseTrans->Update();
    poseTrans->PrintSelf( std::cout, vtkIndent() );

    // local trans: E => A
    double elements2[16] = { xDir[0], xDir[1], xDir[2], 0,
                            yDir[0], yDir[1], yDir[2], 0,
                            zDir[0], zDir[1], zDir[2], 0,
                            0, 0, 0, 1 };
    vtkSPtrNew( localTrans, vtkTransform );
    localTrans->SetMatrix( elements2 );
    double elements3[16] = { 1, 0, 0, -pos[0],
                            0, 1, 0, -pos[1],
                            0, 0, 1, -pos[2],
                            0, 0, 0, 1 };
    localTrans->Concatenate( elements3 );
    localTrans->Update();
    localTrans->PrintSelf( std::cout, vtkIndent() );

    vtkSmartPointer<vtkAxesActor> axes0 = vtkSmartPointer<vtkAxesActor>::New();
    axes0->SetTotalLength( 10, 10, 10 );
    axes0->SetAxisLabels( false );

    vtkSmartPointer<vtkAxesActor> axes1 = vtkSmartPointer<vtkAxesActor>::New();
    axes1->SetTotalLength( 2, 2, 2 ); // change length of three axis
    axes1->SetUserTransform( poseTrans );
    axes1->SetAxisLabels( false );

    vtkSmartPointer<vtkAxesActor> axes2 = vtkSmartPointer<vtkAxesActor>::New();
    axes2->SetTotalLength( 2, 2, 2 ); // change length of three axis
    axes2->SetUserTransform( localTrans );
    axes2->SetAxisLabels( false );

    vtkSPtrNew( renderer, vtkRenderer );
    renderer->AddActor( axes0 );
    renderer->AddActor( axes1 );
    renderer->AddActor( axes2 );
    renderer->SetBackground( 0, 0, 0 );

    vtkSPtrNew( testTrans, vtkTransform ); //Concatenate( poseTrans ), Concatenate( localTrans ): pose x localTrans
    testTrans->Concatenate( localTrans ); //Concatenate( localTrans ), Concatenate( poseTrans ): local x poseTrans
    testTrans->Concatenate( poseTrans );
    testTrans->Update();
    testTrans->PrintSelf( std::cout, vtkIndent() );
/*
    1 0 0 0 
    0 1 0 0 
    0 0 1 0 
    0 0 0 1 
*/

    vtkSPtrNew( renderWindow, vtkRenderWindow );
    renderWindow->AddRenderer( renderer );

    vtkSPtrNew( renderWindowInteractor, vtkRenderWindowInteractor );
    renderWindowInteractor->SetRenderWindow( renderWindow );

    renderer->ResetCamera();
    renderWindow->Render();
    renderWindowInteractor->Start();

    return 0;
}

The order of rotations is opposite for the two processes.

Categories: MathVTK

0 0 votes
Article Rating
Subscribe
Notify of
guest

2 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
trackback

[…] As we know, we can create a linear transform to change model to the special orientation and position. Refer to The Releationship Between Local Transform And Pose Transform. […]

Tex To PDF
: convert the Latex file which suffix is tex to a PDF file

X
2
0
Would love your thoughts, please comment.x
()
x