Affine transformation can be decomposed to translation, rotation, and scale.
As we know, the transformation can be represented by matrix.

    \[M_1 =  \begin{pmatrix} X_0 & Y_0 & Z_0 & P_0 \\ X_1 & Y_1 & Z_1 & P_1 \\ X_2 & Y_2 & Z_2 & P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

Related post: https://www.weiy.city/2021/11/the-releationship-between-local-transform-and-pose-transform/

It can be computed by translate matrix and rotate & scale matrix.

    \[\begin{pmatrix} X_0 & Y_0 & Z_0 & P_0 \\ X_1 & Y_1 & Z_1 & P_1 \\ X_2 & Y_2 & Z_2 & P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & P_0 \\ 0 & 1 & 0 & P_1 \\ 0 & 0 & 1 & P_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} X_0 & Y_0 & Z_0 & 0 \\ X_1 & Y_1 & Z_1 & 0 \\ X_2 & Y_2 & Z_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

Example: I try to do decomposition for a matrix.

    \[\begin{pmatrix} 2 & -2 & 0 & 1 \\  0 & 0 & -1 & 1 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\  0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}  \times \begin{pmatrix} 2 & -2 & 0 & 0 \\  0 & 0 & -1 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

The matrix comes from the three basic linear transforms, scale, rotate and translate.

#include <vtkPointData.h>
#include <vtkSmartPointer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkPolyData.h>
#include <vtkProperty.h>
#include <vtkSphereSource.h>
#include <vtkPolyDataMapper.h>
#include <vtkCommand.h>
#include <vtkSliderWidget.h>
#include <vtkSliderRepresentation.h>
#include <vtkTransform.h>
#include <vtkSliderRepresentation3D.h>
#include <vtkWidgetEventTranslator.h>
#include <vtkWidgetEvent.h>
#include <vtkCubeSource.h>
#include <vtkTransformFilter.h>
#include <vtkAxesActor.h>
#include "./tool.h"

#define vtkSPtr vtkSmartPointer
#define vtkSPtrNew(Var, Type) vtkSPtr<Type> Var = vtkSPtr<Type>::New();

int main(int, char *[])
{
    vtkSPtrNew( source, vtkCubeSource );
    source->Update();

    vtkSPtrNew( scaleM, vtkTransform );
    scaleM->Scale( 2, 2, 1 );
    scaleM->Update();

    double elements[16] = { 1, -1, 0, 0,
                            0, 0, -1, 0,
                            1, 1, 0, 0,
                            0, 0, 0, 1 };
    vtkSPtrNew( rotateM, vtkTransform );
    rotateM->SetMatrix( elements );
    rotateM->Update();

    vtkSPtrNew( moveM, vtkTransform );
    moveM->Translate( 1, 1, 0 );
    moveM->Update();

    vtkSPtrNew( finalM, vtkTransform );
    finalM->Concatenate( moveM );
    finalM->Concatenate( rotateM );
    finalM->Concatenate( scaleM );
    finalM->Update();
    finalM->PrintSelf( std::cout, vtkIndent() );

    vtkSPtrNew( axes, vtkAxesActor );
    axes->SetTotalLength( 1, 1, 1 ); // change length of three axis
    axes->SetUserTransform( finalM );

    double *scaleFactor = finalM->GetScale();
    cout << "scaleFactor: " << scaleFactor[0] << ", " << scaleFactor[1] << ", " << scaleFactor[2] << endl;

    vtkSPtrNew( renderer, vtkRenderer );
    renderer->AddActor( axes );
    renderer->SetBackground( 0, 0, 0 );

    vtkSPtrNew( renderWindow, vtkRenderWindow );
    renderWindow->AddRenderer( renderer );

    vtkSPtrNew( renderWindowInteractor, vtkRenderWindowInteractor );
    renderWindowInteractor->SetRenderWindow( renderWindow );

    renderer->ResetCamera();
    renderWindow->Render();
    renderWindowInteractor->Start();
    return EXIT_SUCCESS;
}

Define variable M =

    \[\begin{pmatrix} 2 & -2 & 0 \\  0 & 0 & -1 \\ 2 & 2 & 0 \end{pmatrix}\]

eigenvalue decomposition

We have to review the eigenvalue decomposition.

If there is a constant value \lambda and non-zero column vector \vec {x} has the relationship AX = \lambda X, we can get the new representation A = W \Sigma W^{-1}.
The eigenvalues are going to fill the diagonal, and the eigenvectors are going to form W.

    \[AX = \lambda X\]

    \[\lambda E X - A X = (\lambda E - A)X =0\]

When the eigenvalues polynomial is equal to 0, it’s called the eigenvalues equation of A.

    \[|\lambda E - A| = 0\]

For example, A =

    \[\begin{pmatrix} 1 & -2  \\ 1 & 4 \end{pmatrix}\]

    \[|\lambda E - A| =  \begin{vmatrix} \lambda - 1 & 2 \\ -1 & \lambda - 4 \end{vmatrix} = (\lambda - 1)(\lambda - 4) +2 = 0\]

Solve it, we get: \lambda_1 = 2, \lambda_2 = 3.

When \lambda = 2, we have:

    \[(\lambda E - A)X =  \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \times  \begin{pmatrix} x \\ y \end{pmatrix} = 0\]

Set X=1, we get Y = -0.5. So an eigenvector is (1, -0.5).
In the case \lambda = 3, we get the eigenvector(1, -1).

So we have :

    \[A = \begin{pmatrix} 1 & -2  \\ 1 & 4 \end{pmatrix}  =  \begin{pmatrix} 1 & 1  \\ -0.5 & -1 \end{pmatrix} \times \begin{pmatrix} 2 & 0  \\ 0 & 3 \end{pmatrix} \times  \begin{pmatrix} 2 & 2  \\ -1 & -2 \end{pmatrix} = W \Sigma W^{-1}\]

singular value decomposition

A more popular decomposition way for matrix is singular value decomposition, SVD. It says, A = U \times W \times V^T. It can be proved by eigenvalue decomposition. SVD does not require the matrix to be decomposed as a square matrix. Let’s say our matrix A is an m x n matrix.

We can use SVD algorithm to decomposite the example’s matrix M.

// decomposition.
    double factors[3];
    auto matrix = finalM->GetMatrix();
    double U[3][3], VT[3][3];
    for( int i = 0; i < 3; ++i )
    {
        U[0][i] = matrix->GetElement( 0, i );
        U[1][i] = matrix->GetElement( 1, i );
        U[2][i] = matrix->GetElement( 2, i );
    }
    vtkMath::SingularValueDecomposition3x3( U, U, factors, VT );
    vtkSPtrNew( matrix_U, vtkMatrix3x3 );
    matrix_U->DeepCopy( (const double *)U );
    matrix_U->PrintSelf( std::cout, vtkIndent() );
    /*
    0.707107    -0.707107   0
    0   0   -1
    0.707107    0.707107    0
*/

    vtkSPtrNew( matrix_W, vtkMatrix3x3 );
    matrix_W->Identity();
    for( int i = 0; i < 3; ++i )
        matrix_W->SetElement( i, i, factors[i] );
    matrix_W->PrintSelf( std::cout, vtkIndent() );
    /*
    2.82843 0   0
    0   2.82843 0
    0   0   1
*/

    vtkSPtrNew( matrix_VT, vtkMatrix3x3 );
    matrix_VT->DeepCopy( (const double *)VT );
    matrix_VT->PrintSelf( std::cout, vtkIndent() );
    /*
    1   0   0
    0   1   0
    0   0   1
*/

So we get:

M=  \begin{pmatrix} 2 & -2 & 0 \\  0 & 0 & -1 \\ 2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0.707107 & -0.707107 & 0 \\  0 & 0 & -1 \\ 0.707107 & 0.707107 & 0 \end{pmatrix} \times \begin{pmatrix} 2.82843 & 0 & 0 \\  0 & 2.82843 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\  0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

The interface finalM->GetScale(); returns singular values of original matrix.

Categories: MathVTK

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Tex To PDF
: convert the Latex file which suffix is tex to a PDF file

X
0
Would love your thoughts, please comment.x
()
x