Uniform Cubic Spline

Piecewise function:

b_{i,4}(t) = \begin{cases} \frac{1}{6} u^3 \quad   i \leq t < i+1, u = t-i\\ \frac{1}{6}(-3u^3+3u^2+3u+1) \quad   i+1 \leq t \leq i+2, u = t - (i+1)\\ \frac{1}{6}(3u^3-6u^2+4) \quad   i+2 \leq t \leq i+3, u = t - (i+2)\\ \frac{1}{6}(-u^3+3u^2-3u+1) \quad  i+3 \leq t \leq i+4, u = t - (i+3)\\ 0 \quad otherwise \end{cases}

The cubic spline graph:

Test code:

#include <vtkActor.h>
#include <vtkCleanPolyData.h>
#include <vtkDistancePolyDataFilter.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPointData.h>
#include <vtkPolyDataMapper.h>
#include <vtkPolyDataReader.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkScalarBarActor.h>
#include <vtkSmartPointer.h>
#include <vtkSphereSource.h>
#include <vtkSTLReader.h>
#include <vtkTransform.h>
#include <vtkMatrix4x4.h>


#include <vector>
#include <list>
#include "point.hpp"


#define vtkSPtr vtkSmartPointer
#define vtkSPtrNew(Var, Type) vtkSPtr<Type> Var = vtkSPtr<Type>::New();


std::vector<Point> originalPts = { Point(1, 0, 0), Point(3, 3, 0), Point(7, 5, 0), Point(9, 0, 0) };


vtkSmartPointer<vtkPolyData> ShowListByLine(std::vector<Point> list)
{
    vtkSPtrNew( result, vtkPolyData );
    vtkSPtrNew( resultPts, vtkPoints );
    vtkSPtrNew( resultLines, vtkCellArray );
    for( int i = 0; i < list.size(); ++i )
    {
        resultPts->InsertNextPoint( list[i].point );
    }
    for( int i = 0; i < list.size()-1; ++i )
    {
        vtkIdType pts[2] = { i, i + 1 };
        resultLines->InsertNextCell( 2, pts );
    }
    result->SetPoints( resultPts );
    result->SetLines( resultLines );
    result->Modified();
    return result;
}


int main(int argc, char* argv[])
{
    double elements[16] = { -1, 3, -3, 1,
                          3, -6, 0, 4,
                          -3, 3, 3, 1,
                          1, 0, 0, 0};
    vtkSmartPointer<vtkTransform> trans = vtkSmartPointer<vtkTransform>::New();
    trans->SetMatrix( elements );

    std::vector<Point> input2Pts;
    auto getVarInVec = [](std::vector<Point> __originalPts, int index){
        if(index >= __originalPts.size())
        {
            return __originalPts[__originalPts.size()-1]; //Point(0, 0, 0);
        }
        if(index < 0)
        {
            return __originalPts[0];
        }
        return __originalPts[index];
    };
    for( int i = -1; i < 3; ++i )
    {
        for(double u = 0; u < 1; u=u+0.1)
        {
            double vec[4] = { u*u*u, u*u, u, 1 };
            double newVec[4];
            trans->MultiplyPoint(vec, newVec);
            Point newPt = (getVarInVec(originalPts, i+0)*newVec[0]+getVarInVec(originalPts, i+1)*newVec[1]+getVarInVec(originalPts, i+2)*newVec[2]+getVarInVec(originalPts, i+3)*newVec[3])*1/6.0;
            input2Pts.push_back( newPt );
        }
    }


    vtkSmartPointer<vtkPolyData> input1 = ShowListByLine( originalPts );
    vtkSmartPointer<vtkPolyData> input2 = ShowListByLine( input2Pts );
    vtkNew<vtkRenderWindow> renWin;
    renWin->SetSize(1200, 500);

    vtkNew<vtkRenderWindowInteractor> renWinInteractor;
    renWinInteractor->SetRenderWindow(renWin);

    double leftViewport[4] = {0.0, 0.0, 0.5, 1.0};
    double rightViewport[4] = {0.5, 0.0, 1.0, 1.0};

    vtkSPtrNew( mapper1, vtkPolyDataMapper );
    mapper1->SetInputData( input1 );
    vtkSPtrNew( actor1, vtkActor );
    actor1->SetMapper( mapper1 );

    vtkSPtrNew( mapper2, vtkPolyDataMapper );
    mapper2->SetInputData( input2 );
    vtkSPtrNew( actor2, vtkActor );
    actor2->SetMapper( mapper2 );

    // Setup renderers
    vtkSPtrNew( leftRenderer, vtkRenderer );
    leftRenderer->SetViewport( leftViewport );
    leftRenderer->AddActor( actor1 );
    leftRenderer->SetBackground(.6, .5, .4);
    leftRenderer->ResetCamera();

    vtkSPtrNew( rightRenderer, vtkRenderer );
    rightRenderer->SetViewport(rightViewport);
    rightRenderer->AddActor( actor2 );
    rightRenderer->SetBackground(.4, .5, .6);
    rightRenderer->SetActiveCamera( leftRenderer->GetActiveCamera() );

    renWin->AddRenderer( leftRenderer );
    renWin->AddRenderer( rightRenderer );

    renWin->Render();
    renWinInteractor->Start();

    return EXIT_SUCCESS;
}

Result:

Uniform Quadratic Spline

Basis Piecewise function:

b_{i,3}(t) = \begin{cases} \frac{1}{2} u^2 \quad   i \leq t < i+1, u = t-i\\ -u^2+u+\frac{1}{2} \quad   i+1 \leq t \leq i+2, u = t - (i+1)\\ \frac{1}{2}(1-u)^2 \quad   i+2 \leq t \leq i+3, u = t - (i+2)\\ 0 \quad otherwise \end{cases}

Implementation:

    std::vector<Point> input2Pts;
    auto getVarInVec = [](std::vector<Point> __originalPts, int index){
        if(index >= __originalPts.size())
        {
            return __originalPts[__originalPts.size()-1]; //Point(0, 0, 0);
        }
        if(index < 0)
        {
            return __originalPts[0];
        }
        return __originalPts[index];
    };
    for( int i = -1; i < 3; ++i )
    {
        for(double u = 0; u < 1; u=u+0.1)
        {
            double vec[3] = { (1-u)*(1-u)*0.5, -u*u+u+0.5, u*u*0.5 };
            Point newPt = getVarInVec(originalPts, i+0)*vec[0]+getVarInVec(originalPts, i+1)*vec[1]+getVarInVec(originalPts, i+2)*vec[2];
            input2Pts.push_back( newPt );
        }
    }

Uniform Linear Spline

Basis functions:

b_{i,2}(t) = \begin{cases} t - i \quad   i \leq t < i+1, \\ 2-t+i \quad   i+1 \leq t \leq i+2, \\ 0 \quad otherwise \end{cases}

Test code:

    std::vector<Point> input2Pts;
    auto getVarInVec = [](std::vector<Point> __originalPts, int index){
        if(index >= __originalPts.size())
        {
            return __originalPts[__originalPts.size()-1]; //Point(0, 0, 0);
        }
        if(index < 0)
        {
            return __originalPts[0];
        }
        return __originalPts[index];
    };
    for( int i = 0; i < 4; ++i )
    {
        for(double u = 0; u < 1; u=u+0.3)
        {
            double vec[2] = { 1-u, u };
            Point newPt = getVarInVec(originalPts, i+0)*vec[0]+getVarInVec(originalPts, i+1)*vec[1];
            input2Pts.push_back( newPt );


            std::cout << "newPt: " << newPt[0] << ", " << newPt[1] << ", " << newPt[2] << std::endl;
        }
    }

Categories: MathVTK

0 0 votes
Article Rating
Subscribe
Notify of
guest

1 Comment
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
trackback

[…] input points and use the Cubic piecewise function introduced in Basic functions for B-Spline to create smooth […]

Tex To PDF
: convert the Latex file which suffix is tex to a PDF file

X
1
0
Would love your thoughts, please comment.x
()
x